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Abstract. A simple, local cluster interaction is presented, which has as (only) gmund states 
perfectly quasicrystalline tilings from a single local isomorphism class. Since these riling do not 
allow for any perfect matching mles, it is thereby shown that the class of swctureQ which are the 
gmund state of some finite range interaction is considerably larger than previously anticipated. 
Cluster intemtions having a quasicrystalline~ground stale turn out to be simple and robust, 
and therefore provide an amactive explanation for the existence of quasicrystds. A simplified 
Yersion of our cluster interaction is found to have super-tile random riling gmund states. Due 
to the large size of the super-tiles. these random tilings still Look perfect on a I d  scale. 

1. Introduction 

It is generally believed that the existence of local matching rules for a quasiperiodic tiling, 
and the existence of finite range interactions, having as a ground state a quasicrystalline 
structure locally decorating that tiling, are closely related to each other. More precisely, 
it can be argued [1,2] that whenever a quasicrystalline structure and a quasiperiodic tiling 
with pelfect matching rules (31 are locally derivable [4] from each other, there exist finite 
range interactions having this structure as their ground state. Perfect matching rules enforce 
tilings (or other discrete structures) from a single local isomorphism (LI) class, consisting, 
roughly speaking, of tilings locally indistinguishable from each other. Perfect matching 
rules thus are the strongest possible matching rules. This strong requirement of perfect 
matching rules was not considered a problem, since in most cases one is anyway interested 
in having interactions whose set of ground states consists of structures from a single LI 
class. 

There are, however, interesting structures whose LI class does not allow for any local, 
perfect matching rules. Notable examples are certain eight- or twelve-fold symmetric 
quasiperiodic tilings [2]. In these latter cases the problem is usually 'solved' by adding 
further, non-local information to the tiling, in the form of a (non-local) decoration [SI. 
However, this cannot really be considered a solution of the problem, since the structure 
with decoration certainly is not the same structure any m o r e t h e  decorated structure is not 
even in the same local derivability class. The stabilization of~the undecorated structure by 
finite range interactions therefore still remains as an open problem. 
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Some of the tilings without perfect matching rules still allow for so-called strong 
matching rules [3], which enforce perfectly ordered tilings, but allow for tilings from more 
than one LI class, usually from a whole one-parameter family of LI classes. An important 
observation now is that structures from different LI classes, for generic interactions at least, 
will always have different energies. Therefore, if we have any interaction which favours a 
set of strong, but non-perfect matching rules, it will, of course, penalize tilings not satisfying 
the matching rules by giving them a high energy, but it will also differentiate between the 
different LI classes allowed by the matching rules, by giving them'different energies. The 
problem then is to find out which LI class among those allowed by the matching rules has 
the lowest energy, and thus is the ground state of the interaction. Conversely, if a specific LI 
class is given, chosen among those allowed by the matching rules, the question is whether 
this LI class is the ground state of a suitable local interaction, which should preferably be 
simple and of short range. The latter seems possible if the LI class in question is somehow 
uniquely distinguished among the other ones allowed by the matching rules. For instance, 
it might have a higher symmetry than all the other LI classes. For a generic choice of an LI 
class, however, the existence of such an interaction is questionable. Still, we can conclude 
that under certain additional conditions it should be possible to build lqcal interactions 
having a ground state which does not admit perfect matching rules. 

In the following, these ideas will be illustrated by explicitly working out a particular 
example, the undecorated octagonal Ammann-Beenker tiling 16.71. In section 2 a 
simple cluster interaction will be presented, which has as its only ground states perfectly 
quasiperiodic octagonal tilings. In section 3 it is shown that a simplified version of this 
interaction, which is not able to stabilize the perfect octagonal tiling, still leads to super-tile 
random tiling ground states. Finally, in section 4 we summarize our results and discuss the 
prospects of applying these concepts to other systems. 

2. A cluster interaction stabilizing the undecorated octagonal tiling 

It is well known that octagonal Ammann-Beenker tiling [6,7], which is composed of squares 
and 45" rhombi, does not allow for perfect matching rules. This can be seen as follows. 
Any square-rhombus tiling which is consistently arrowable by Beenker arrows [7] on the 
edges can uniquely (and locally) be deflated an arbitrary number of times. This is the case, 
in particular, for the (periodic) tiling consisting of squares only. Starting with this square 
tiling, after two deflations we arrive at a tiling, all of whose vertex neighbourhoods are 
allowed vertex neighbourhoods from the perfect octagonal tiling. At the scale of vertex 
neighbourhoods, thus this tiling cannot be distinguished from a perfect octagonal tiling, 
and with each further deflation, the scale at which the tiling is indistinguishable from the 
perfect octagonal tiling is increased by another factor U = 1 +A. Since all these tilings 
are periodic, one can find among them a counterexample to any attempt to characterize the 
octagonal tiling by an atlas [SI of allowed neighbourhoods of maximal size R ,  which proves 
that the undecorated octagonal tiling does not admit peffect matching rules. 

The octagonal tiling does support strong matching rules, however. Such strong matching 
rules are given by the alternation condition [9], which had originally been introduced as 
so-called weak matching rules for general 2D rhombus tiligs, but failed to work in the 
octagonal case, because it is not able to exclude periodic approximants. The alternation 
condition requires that along my lane of tiles the rhombi have ro point to alternating sides 
of the lane. An example of such a lane of tiles is shown in figure 1. It has been shown [lo] 
that the alternation condition for the square-rhombus tiling, which is equivalent to the 
matching rules imposed by the Beenker arrows [7], enforces tilings which are perfectly 
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quasiperiodic and (at least) four-fold symmetric, or which are periodic approximantst to 
such tilings, with square unit cell. The tilings compatible with the alternation condition 
consist of all cut- and projection tilings whose cut space is rotated with respect to the 
octagonal cut space by a Schur rotation [ l l ]  maintaining one of the two 04 subgroups 
of the octagonal Dg symmetry group (see also [12]). The space onto which the tiling is 
projected is always the same, in order to maintain the shape of the tiles. The D4 symmetry 
group that is preserved contains those mirror lines which contain the tile edges. Maintaining 
the other mirror lines, which are contained in the other Dq subgroup, does not lead to tilings 
satisfying the alternation condition. Within the family of tilings allowed by the alternation 
condition, there is a single LI class with full octagonal symmetry. All other tilings have 
only four-fold symmetry, some of which are even periodic. 

Figure 1. A lane of tiles satisfying the alternation condition. 

Figure 2. The octagon cluster (left) and the ship cluster (right). 

Our strategy now is to choose a simple interaction which strongly favours the alternation 
condition, and at the same time prefers the perfect octagonal tiling against all other tilings 
allowed by the alternation condition. Since in the octagonal tiling there are never more than 
two squares between two consecutive rhombi pointing to opposite sides of a lane, we shall 
actually choose an interaction which favours structures having this more restrictive property 
too. To construct this interaction, we first have to take a closer look at the structure of the 
perfect octagonal tiling. It is easily verified that if between two consecutive rhombi there is 
no square in the same lane, then the two rhombi are part of a hexagon. Every such hexagon 
is contained in an octagon cluster, shown in figure 2. The same holds true for every pair 
of consecutive rhombi with one square in between. A pair of consecutive rhombi with two 
squares in between is always contained in a ‘ship’ cluster also, shown in figure 2. Since 
in the octagonal tiling there ace never more than two squares between two rhombi, every 
instance of the alternation condition being satisfied (i.e. two consecutive rhombi pointing 
to alternating sides of the lane) is contained in at least one of the two clusters shown in 
figure 2. For this reason, we shall give these two clusters low, negative energys. All other 
clusters are given zero energy. It will then be shown that if the ratio p = Eoct/Eship of 
these two cluster energies is chosen properly, tilings having minimal energy will satisfy 
the alternation condition and will be eight-fold symmetric, i.e. they are perfect octagonal 
tilings. 

t The periodicity of some of the ‘periodic’ approximant tilings compatible with the alternation condition may be 
slightly broken, due to some singular worms which are flipped (see [IO]). 
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Interactions which give low energy only to a few clusters most important for the 
structure, and zero energy to all other clusters, have recently been proposed by Jeong 
and Steinhardt [13]. Such interactions do not try to exclude unwanted configurations by 
explicitly giving them high energy. Rather, these interactions minimize the energy of the 
structure by maximizing the density of the low energy clusters. This is achieved by frequent 
overlaps of such clusters, which leads to correlations. If the low energy clusters are chosen 
properly, perfectly ordered structures may emerge as the ground state, even though the 
interaction does not explicitly penalize bad, defective local configurations. Such interactions 
appear to be very robust, i.e. they need no excessive fine tuning of parameters in order to 
work, and they seem relatively easy to realize in terms of atomic pair interactions. 

Here we should keep in mind that in complex slructures such as quasicrystals we 
cannot expect that all pairs of neighbouring atoms are at their ideal distances, where the 
corresponding pair potential is minimal. For geometrical reasons there will always be some 
bonds which are somewhat frustrated, and a compromise between the competing interactions 
has to be found for the ground-state structure. However, there may be some finite clusters 
for which all interatomic distances fit almost perfectly to the corresponding pair potentials. 
Therefore such clusters will have a particularly low energy, and it is advantageous to pack 
them as densely as possible, with large overlaps. In our tiling model, these low energy 
clusters are represented by low energy tile clusters, which of course should be thought of 
as being decorated with atoms. 

By construction, the interaction we have chosen strongly favours the alternation 
condition. Still, we have to demonstrate that it also favours the octagonal tiling among 
all tilings satisfying the alternation condition. For this we need to calculate the densities 
of the octagon and ship clusters as a function of the Schur rotation angle rp. which we set 
equal to zero for the octagonal tiling. These densities are easily obtained from the areas of 
the subregions of the (deformed) acceptance domains corresponding to these two clusters 
(see [IZ]). To leading order, both densities vary quadratically as a function of rp, one with 
a maximum and one with a minimum at rp = 0. The exact result is 

d, t (p)=o-1(~-u2tanzp)  (Itanrpl < U " )  (14 
d*i,(p)= p I -2 ( ~ + u ~ t a n ~ p )  (1b) 

where again we have set U = A+ 1. The range of validity of (1) is determined by the 
domains of stability of the topology of the corresponding subwindows. It should be noted 
that these results are exact even for periodic approximants, for which the calculation of 
the areas of the subwindows does not necessarily lead to the correct result. In this case, 
however, there is only one possible unit cell content for each approximant [12], for which 
(1) can be checked explicitly. 

From equation (1) it is now clear that the octagonal tiling has minimal energy among 
all tilings satisfying the alternation condition, at least among those with moderate phason 
strain, provided the ratio of cluster energies p = Eoef/Eship satisfies the inequality Zp > U ,  
Would this be an equality, a periodic approximant with square unit cell of edge length U 

would be energetically competitive. Note that for that approximant (Ib) holds even though 
its phason strain is outside the domain of validity of ( l b ) .  It is also clear that the ratio p 
must be bounded from above, too, since with a cluster energy EIhip = 0 the structure could 
be disordered by partially flipping certain worms without any energy cost (see [14]). In 
order to determine the correct interval of admissible values for the ratio j~ of the cluster 
energies, we have numerically calculated the densities of octagon and ship clusters for a 
large number of various kinds of periodic approximants to the octagonal tiling, concentrating 
on approximants which are not permitted by the alternation condition, or which are outside 

(~ tanpl  <U-')  
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the domain of validity of (1). From these densities we can derive that the octagonal tiling 
has lowest energy whenever the ratio of the cluster energies satisfies the inequalities 

The structure with highest relative octagon density is found to be a periodic approximant 
with rhombic unit cell of edge length U', which leads to the upper bound in (2). Therefore, 
at both borders of the (huge) window in (2) there is a periodic approximant which becomes 
energetically competitive. 

While the above' results provide &ple evidence that under the condition (2) the 
octagonal tiling is preferred against periodic approximants, and probably also against non- 
periodic structures with a linear phason strain, they do not provide any information about 
other tilings made from the same tiles. ~ In particular, these results cannot exclude that 
rearrangements of tiles not occurring in perfect approximants could further lower the energy. 
In order to exclude such possibilities, we have used Monte Carlo simulations, similar to the 
ones used in [ 131, to find the real ground state. A large number of periodic approximants of 
different shapes and sizes of up to a few thousand tiles have been slowly cooled from infinite 
to zero temperature. In all cases where the inequalities (2) were satisfied, and cooling was 
slow enough, the correct, perfectly ordered ground state has been found. As this ground 
state could be recovered from a'completely disordered state, this provides sbong evidence 
that the octagonal LI class of tilings is indeed the ground state of our cluster interaction. 

3. An interaction with super-tile random tiling ground states 

It is easy to see that favouring only one of the two clusters is not enough to obtain an 
octagonal ground state. As mentioned above, when only octagon clusters are given low 
energy, the overall ground state is a periodic approximant with rhombic unit cell of edge 
length U*. Still, it is interesting to consider such,a system at fixed stoichiometry, i.e. at 
fixed concentration for each kind of tile, which also fixes an average phason strain for 
the tiling. An important observation now is that a perfect octagonal tiling can always be 
composed from a tiling of big squares and rhombi, both with edge length U * ,  which is 
nothing but its second inflation (figure 3). The big~square and rhombic super-tiles are all 
decorated in the same way, and it is easily verified that rearranging these super-tiles does 
not change the number of octagons present in the smcture (see figure 4). In fact, any 
random tiling with these super-tiles, and with the same density of squares and rhombi, will 
have the same density of~octagons the perfect octagonal tiling, and therefore will be 
energetically degenerate with it. In particular, this is the case for square-rhombus super-tile 
random tilings with zero average phason strain. The same reasoning can be applied to tilings 
with any other given, fixed phason strain. Note, however, that in the case of a periodic 
approximant there might be no super-tile tiling compatible with that periodicity, so that part 
of the periodicity has to be given up in the super-tile tiling, although the phason strain of 
the approximant is maintained. For each given phason strain, there is a whole ensemble of 
super-tile random tilings which are energetically degenerate. 

In order to find the true set of ground states for this system, the Monte Carlo methods 
used in [13] have also been applied in this case. Our simulations, which we performed for 
many different periodic approximants compatible with a super-tile tiling, have shown that 
the square-rhombus super-tile random tilings do indeed belong to the ground state, which 
is therefore heavily degenerate. An example of such a random tiling, obtained in one of 
the simulations, is shown in figure 4. There are, however, other ground-state structures as 
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Figure 3. Part of a perfect octagonal tiling, composed to square and rhombus super-tiles. 

Figure 4. Square-rhombus super-tile random tiling. Note thnt the super-tiles do not saiisfy the 
alternation condition everywhere. This configuration was obtained by slow cooling in n Monte 
Carlo simulation. with m interaction favouring only octagon clusters. 
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Figure 5. Triangleda~t super-tile random tiling, obtained in a Monte Carlo simulation under 
the same conditions 3s the tiling of figure 4. Note that P region near the bottom of the figure 
unnot be composed to square and rhombus super-tiles. 

well, which are not square-rhombus super-tile tilings. One of these is shown in figure 5. 
These other ground-state structures can be described as super-tile tilings with isosceles 
triangles and darts as super-tiles. Note that any square-rhombus super-tile tiling can also 
be decomposed into these smaller super-tiles: rhombi are divided into two triangles, and 
squares into two triangles and one dart. As we have found no other ground states, we 
conclude that the ensemble of ground-state configurations at fixed phason strain consists of 
triangle and dart super-tile random tilings. Other examples of interactions having super-tile 
random tiling ground states have previously been found by Jeong and Steinhardt 1131. 

An interesting aspect of these super-tile random tiling ground states is that they look very 
perfect at a local scale. The reason is that, on the one hand, the decorations of the super- 
tiles.are legal configurations which also frequently occur in the perfect tiling, and on the 
other hand, due to the~large size of the super-tiles, the effective phason stiffness is strongly 
enhanced [15], compared to a random tiling will small tiles. Such states are therefore hard 
to distinguish from perfectly ordered states, and might be perfectly acceptable as models 
for the structure of even very well ordered quasicrystals. 

It is instructive to see what happens to the super-tile random tilings if the ship clusters 
are again included in the set of low energy clusters. We note that a ship cluster is located 
on all of the super-tile edges in figure 3,  and^ most of the super-tile edges in figure 4. 
More precisely, there is a ship cluster on all those edges where the alternation condition is 
satisfied for the super-tiles. In other words: the ship clusters hook the square and rhombus 
super-tiles together in such a way that the alternation condition is satisfied at the super-tile 
level. For each violation of the alternation condition there is (at least) one edge where the 
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two halves of the ship cluster on both sides of the edge do not combine to give a complete 
ship cluster. The decoration of the larges squares and rhombi makes sure that on parallel 
edges of a square, ship clusters are oriented alike, whereas on parallel edges of a rhombus 
they have opposite orientations. The orientation of the ship clusters therefore works in the 
same way as the Beenker arrows on tile edges. Whenever there is a mismatch of the arrow 
directions of the two tiles adjacent to an edge, the two half-ships do not combine to give a 
complete ship cluster. In a similar way, the ship clusters also make sure that triangles and 
darts are arranged in such a way that they can be composed to give squares and rhombi. In 
every triangledart configuration where this is not possible, there is a lower than maximal 
density of ship clusters. A configuration where this happens is shown in figure 5. By these 
mechanisms it thus becomes very transparent how the inclusion of the ship clusters in the 
interaction can order the super-tile random tilings to perfectly ordered tilings, in the case of 
zero phason strain even to perfect octagonal tilings. 

F Glihler a d  H-C Jeong 

4. Discussion and conclusion 

In this paper we have studied how far simple cluster interactions can stabilize a unique 
LI class of quasicrystalline ground states, even in cases where this LI class does not allow 
for perfect matching rules. As we have worked with a pure tiling model, which implies, 
in particular, that we have completely rigid clusters, we have implicitly assumed that the 
interactions responsible for the formation of the tiles and the clusters are much stronger 
than the coupling between the clusters. It seems that this assumption is not completely 
unreasonable, as it is well known that certain clusters already tend to form in the melt, 
shortly before solidification, and it is certainly compatible with our other assumption that 
these clusters have much lower energy than all the other clusters. 

Having made this reservation, the following conclusions, which are drawn from our 
(mostly numerical) results, appear to be relevant for a better understanding of quasicrystal 
formation: 

(i) Local isomorphism classes of tilings, or other discrete structures, which do not admit 
any local matching rules can still be the (complete) set of ground states of very simple, 
local interactions. In the example presented here, this is possible because there are local 
matching rules which enforce at least a family of LI classes of tilings which are already 
perfectly ordered. Within such a family of LI classes, however, the only LI classes which 
can be selected by a local interaction are those that are somehow distinguished from 
the other members of the family. In the present case, the LI class of octagonal tilings 
has a higher symmetry than all  the^ other tilings in the family. 

(ii) There are very simple, local interactions having a quasicrystalline ground state, and these 
interactions seem to be very robust. No fine-tuning of any parameters was necessary. 
Our example shows that an interaction having a quasicrystalline ground state does not 
need to favour all allowed clusters up to a given size against all forbidden ones, nor 
does it need to include all these clusters in the interaction. It is sufficient to favour just 
the most important clusters, and disregard all the other ones, whether they are allowed 
or forbidden. By giving a number of important clusters a lower energy than all the other 
clusters, a quantirative element is introduced in the interaction, which is not present in 
a pure matching rule interaction, where all allowed clusters have the same energy. In 
this respect, such a cluster interaction is more realistic. 

(iii) Interactions not capable of enforcing a completely ordered ground state may still have 
super-tile random tiling ground states. Even though such structnm are not perfectly 
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ordered, they may still look perfect on a local scale. Since such ground states can 
be obtained with even simpler interactions than perfectly quasiperiodic ground states, 
they represent attractive models which can describe the structure of even well ordered 
quasicrystals in a perfectly acceptable way. 

We have obtained these results with the example of the octagonal Ammann-Beenker 
tiling, but it should be noted that there are other examples which are expected to be 
completely analogous. In particular, many (undecorated) dodecagonal tilings suffer are 
from the same deficiencies as the octagonal tiling [ Z ] ,  in that they do not allow for perfect 
matching rules, although one can expect matching rules to exist which enforce tilings in a 
family of LI classes with (at least) six-fold symmetry. We expect that also in these cases a 
simple cluster interaction is capable of stabilizing a single LI class of perfectly dodecagonal 
tilings. For the dodecagonal tiling introduced by Socolar 1161, consisting of hexagons, 
squares and 30" rhombi, the analogy seems to extend even to the matching Nles. With the 
methods used in [IO] it should be possible to prove that the alternation condition enforces 
a family of perfectly ordered tilings in that case also. 
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